Research on Low-Carbon, Energy-Saving Sintering Process with Uniform Temperature for Drill Bits

Author:

Wang Jinlong1234,Gao Ke1234,Li Peishu1234,Zhao Yan1234

Affiliation:

1. College of Construction Engineering, Jilin University, Changchun 130026, China

2. Technology Innovation Center for Directional Drilling Engineering, Ministry of Natural Resources, Langfang 065000, China

3. Innovation Base for Directional Drilling Engineering, Geological Society of China, Langfang 065000, China

4. Engineering Research Center of Geothermal Resources Development Technology and Equipment, Ministry of Education, Jilin University, Changchun 130026, China

Abstract

A low-carbon and energy-saving sintering process with uniform temperature distribution has been developed to address several issues associated with the sintering of drill bits in medium-frequency furnaces, namely, the large circumferential temperature differences, uneven heating of the mold, and low energy utilization. Theoretical calculations indicated that the output energy of the conventional drill bit sintering process was 12.7 kW·h, with an energy loss of 8.84 kW·h. The low-carbon sintering process achieved an output energy of 4.2 kW·h, with an energy loss of only 0.26 kW·h. Consequently, the energy utilization rates for the two processes were 30.4% and 93.8%, respectively. It was observed through the experiment that when sintering 76/49 mm drill bits at insulation temperatures of 900 °C and 1080 °C, the circumferential temperature differences in the mold were 43.7 °C and 48 °C, respectively, in the conventional drill bit sintering process. In contrast, the circumferential temperature differences in the mold were reduced to 8.7 °C and 11.3 °C, respectively, in the low-carbon and energy-saving sintering process with uniform temperature. This indicates that the average circumferential temperature difference in the mold can be reduced by 81.61% at 900 °C and by 76.46% at 1080 °C, leading to improved drill bit quality.

Funder

Technology Innovation Center for Directional Drilling Engineering, Ministry of Natural Resources, Innovation Base for Directional Drilling Engineering, Geological Society of China

National Key R&D Program of China

National Natural Science Foundation of China

Engineering Research Center of Geothermal Resources Development Technology and Equipment, Ministry of Education, Jilin University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3