Understanding the Effect of Hydro-Climatological Parameters on Dam Seepage Using Shapley Additive Explanation (SHAP): A Case Study of Earth-Fill Tarbela Dam, Pakistan

Author:

Ishfaque MuhammadORCID,Salman SaadORCID,Jadoon Khan Zaib,Danish Abid Ali Khan,Bangash Kifayat Ullah,Qianwei Dai

Abstract

For better stability, safety and water resource management in a dam, it is important to evaluate the amount of seepage from the dam body. This research is focused on machine learning approach to predict the amount of seepage from Pakistan’s Earth and rock fill Tarbela Dam during 2003 to 2015. The data of temperature, rainfall, water inflow, sediment inflow, reservoir level collected during 2003 to 2015 served as input while the seepage from dam during this period was the output. Artificial Neural Network (ANN), Random Forest (RF), Support Vector Machine (SVM), and CatBoost (CB), have been used to model the input-output relationship. The algorithms used to predict the dam seepage reported a high R2 scores between actual and predicted values of average seepage, suggesting their reliability in predicting the seepage in the Tarbela Dam. Moreover, the CatBoost algorithm outperformed, by achieving an R2 score of 0.978 in training, 0.805 in validation, and 0.773 in testing phase. Similarly, RMSE was 0.025 in training, 0.076 in validation, and 0.111 in testing phase. Furthermore, to understand the sensitivity of each parameter on the output (average seepage), Shapley Additive Explanations (SHAP), a model explanation algorithm, was used to understand the affect of each parameter on the output. A comparison of SHAP used for all the machine learning models is also presented. According to SHAP summary plots, reservoir level was reported as the most significant parameter, affecting the average seepage in Tarbela Dam. Moreover, a direct relationship was observed between reservoir level and average seepage. It was concluded that the machine learning models are reliable in predicting and understanding the dam seepage in the Tarbela Dam. These Machine Learning models address the limitations of humans in data collecting and analysis which is highly prone to errors, hence arriving at misleading information that can lead to dam failure.

Funder

National Natural Science Foundation of China

National Key Research and Development program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference100 articles.

1. Water–food–energy–climate nexus and technology productivity: a Nigerian case study of organic leafy vegetable production

2. The Strictest Water Resources Management Strategy and Its Three Red Lines;Shen,2021

3. Renewable Energy Storage Methods;Demir;Int. Sci. J.,2018

4. Water and society;Rezaee,2021

5. Water-resources situation in Pakistan: Challenges and future strategies;Kahlown,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3