Description and Characterization of the Odontella aurita OAOSH22, a Marine Diatom Rich in Eicosapentaenoic Acid and Fucoxanthin, Isolated from Osan Harbor, Korea

Author:

An Sung Min1ORCID,Cho Kichul1,Kim Eun Song1,Ki Hyunji1,Choi Grace1ORCID,Kang Nam Seon1ORCID

Affiliation:

1. Department of Microbial Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea

Abstract

Third-generation biomass production utilizing microalgae exhibits sustainable and environmentally friendly attributes, along with significant potential as a source of physiologically active compounds. However, the process of screening and localizing strains that are capable of producing high-value-added substances necessitates a significant amount of effort. In the present study, we have successfully isolated the indigenous marine diatom Odontella aurita OAOSH22 from the east coast of Korea. Afterwards, comprehensive analysis was conducted on its morphological, molecular, and biochemical characteristics. In addition, a series of experiments was conducted to analyze the effects of various environmental factors that should be considered during cultivation, such as water temperature, salinity, irradiance, and nutrients (particularly nitrate, silicate, phosphate, and iron). The morphological characteristics of the isolate were observed using optical and electron microscopes, and it exhibited features typical of O. aurita. Additionally, the molecular phylogenetic inference derived from the sequence of the small-subunit 18S rDNA confirmed the classification of the microalgal strain as O. aurita. This isolate has been confirmed to contain 7.1 mg g−1 dry cell weight (DCW) of fucoxanthin, a powerful antioxidant substance. In addition, this isolate contains 11.1 mg g−1 DCW of eicosapentaenoic acid (EPA), which is one of the nutritionally essential polyunsaturated fatty acids. Therefore, this indigenous isolate exhibits significant potential as a valuable source of bioactive substances for various bio-industrial applications.

Funder

National Marine Biodiversity Institute of Korea

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3