In Vitro Anti-Inflammatory Activity and Structural Characteristics of Polysaccharides Extracted from Lobonema smithii Jellyfish

Author:

Summat Thitikan1,Wangtueai Sutee1ORCID,You SangGuan23,Rod-in Weerawan24ORCID,Park Woo Jung23,Karnjanapratum Supatra5,Seesuriyachan Phisit6,Surayot Utoomporn1ORCID

Affiliation:

1. College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand

2. Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea

3. East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea

4. Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand

5. Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand

6. Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand

Abstract

Crude polysaccharides were extracted from the white jellyfish (Lobonema smithii) using water extraction and fractionated using ion-exchange chromatography to obtain three different fractions (JF1, JF2, and JF3). The chemical characteristics of four polysaccharides were investigated, along with their anti-inflammatory effect in LPS-stimulated RAW264.7 cells. All samples mainly consisted of neutral sugars with minor contents of proteins and sulphates in various proportions. Glucose, galactose, and mannose were the main constituents of the monosaccharides. The molecular weights of the crude polysaccharides and the JF1, JF2, and JF3 fractions were 865.0, 477.6, 524.1, and 293.0 kDa, respectively. All polysaccharides were able to decrease NO production, especially JF3, which showed inhibitory activity. JF3 effectively suppressed iNOS, COX-2, IL-1β, IL-6, and TNF-α expression, while IL-10 expression was induced. JF3 could inhibit phosphorylated ERK, JNK, p38, and NF-κB p65. Furthermore, flow cytometry showed the impact of JF3 on inhibiting CD11b and CD40 expression. These results suggest that JF3 could inhibit NF-κB and MAPK-related inflammatory pathways. The structural characterisation revealed that (1→3)-linked glucopyranosyl, (1→3,6)-linked galactopyranosyl, and (1→3,6)-linked glucopyranosyl residues comprised the main backbone of JF3. Therefore, L. smithii polysaccharides exhibit good anti-inflammatory activity and could thus be applied as an alternative therapeutic agent against inflammation.

Funder

Fundamental Fund 2022, Chiang Mai University

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3