Design and Evaluation of Capacitive Smart Transducer for a Forestry Crane Gripper

Author:

Anandan Narendiran1ORCID,Arronde Pérez Dailys1ORCID,Mitterer Tobias1ORCID,Zangl Hubert1ORCID

Affiliation:

1. Sensors and Actuators Group, Institute for Smart System Technologies, Universität Klagenfurt, 9020 Klagenfurt am Wörthersee, Austria

Abstract

Stable grasps are essential for robots handling objects. This is especially true for “robotized” large industrial machines as heavy and bulky objects that are unintentionally dropped by the machine can lead to substantial damages and pose a significant safety risk. Consequently, adding a proximity and tactile sensing to such large industrial machinery can help to mitigate this problem. In this paper, we present a sensing system for proximity/tactile sensing in gripper claws of a forestry crane. In order to avoid difficulties with respect to the installation of cables (in particular in retrofitting of existing machinery), the sensors are truly wireless and can be powered using energy harvesting, leading to autarkic, i.e., self-contained, sensors. The sensing elements are connected to a measurement system which transmits the measurement data to the crane automation computer via Bluetooth low energy (BLE) compliant to IEEE 1451.0 (TEDs) specification for eased logical system integration. We demonstrate that the sensor system can be fully integrated in the grasper and that it can withstand the challenging environmental conditions. We present experimental evaluation of detection in various grasping scenarios such as grasping at an angle, corner grasping, improper closure of the gripper and proper grasp for logs of three different sizes. Results indicate the ability to detect and differentiate between good and poor grasping configurations.

Funder

Austrian Ministry for Transport, Innovation and Technology (BMVIT) within the ICT of the Future Programme (4th call) of the Austrian Research Promotion Agency

“European Regional Development Fund” (EFRE) and “REACT-EU”

Competence Centers for Excellent Technologies (COMET) K1 Austrian Smart Systems Integration Research Center

Austrian Federal Ministry for Transport, Innovation, and Technology

Austrian Federal Ministry of Science, Research, and Economy

federal provinces of Carinthia and Styria

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3