Maritime Communications—Current State and the Future Potential with SDN and SDR

Author:

Niknami Nadia1ORCID,Srinivasan Avinash2ORCID,St. Germain Ken2,Wu Jie1

Affiliation:

1. Center of Networked Computing, Temple University, Philadelphia, PA 19122, USA

2. Department of Cyber Science, United States Naval Academy, Annapolis, MD 21402, USA

Abstract

The rise of the Internet of Things (IoT) has opened up exciting possibilities for new applications. One such novel application is the modernization of maritime communications. Effective maritime communication is vital for ensuring the safety of crew members, vessels, and cargo. The maritime industry is responsible for the transportation of a significant portion of global trade, and as such, the efficient and secure transfer of information is essential to maintain the flow of goods and services. With the increasing complexity of maritime operations, technological advancements such as unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs), and the Internet of Ships (IoS) have been introduced to enhance communication and operational efficiency. However, these technologies also bring new challenges in terms of security and network management. Compromised IT systems, with escalated privileges, can potentially enable easy and ready access to operational technology (OT) systems and networks with the same privileges, with an increased risk of zero-day attacks. In this paper, we first provide a review of the current state and modalities of maritime communications. We then review the current adoption of software-defined radios (SDRs) and software-defined networks (SDNs) in the maritime industry and evaluate their impact as maritime IoT enablers. Finally, as a key contribution of this paper, we propose a unified SDN–SDR-driven cross-layer communications framework that leverages the existing SATCOM communications infrastructure, for improved and resilient maritime communications in highly dynamic and resource-constrained environments.

Funder

NSF

Publisher

MDPI AG

Subject

Critical Care Nursing,Pediatrics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3