In Vitro Bactericidal Effects of Photodynamic Therapy Combined with Four Tetracyclines against Clostridioides difficile KCTC5009 in Planktonic Cultures

Author:

Choi Sung Sook,Oh Hui Yeong,Kim Eui Jin,Lee Hae Kyung,Kim Hyung Keun,Choi Hyun Ho,Kim Sang Woo,Chae Hiun Suk

Abstract

Surface disinfection in health-care facilities is critical to prevent dissemination of Clostridioides difficile (C. difficile). Tetracyclines (TCs) are broad-spectrum antibiotics that are associated with a low risk of development of C. difficile infection (CDI) and are used as photosensitizers (PS) in photodynamic therapy (PDT). We evaluated whether TCs may be useful environmental cleansing agents. We compared the in vitro ability to kill C. difficile of four TCs (TC, doxycycline, minocycline, and tigecycline) combined with PDT using ultraviolet A (UVA). We included chitosan, a cationic material, as a booster to increase the photodynamic bactericidal efficacy of TCs. PDT-induced bactericidal effects were assessed by the number of viable cells and the degree of DNA damage and membrane integrity. To avoid the intrinsic antibacterial activity of TCs at high concentrations, we used low concentrations of TCs (0.05 and 0.1 mg/mL). The bactericidal effect of treatment with chitosan plus PDT was over 100 times higher than that with PDT alone for each of the four TCs. DNA damage measured by ethidium bromide monoazide and real-time quantitative polymerase chain reaction was also greater for PDT plus chitosan treatment than for PDT alone or under control conditions: the threshold cycle (Ct) values for the control, PDT, and PDT plus chitosan were 14.67 ± 0.22, 20.46 ± 0.12, and 25.54 ± 0.17, respectively. All four TCs caused similar levels of severe cell membrane damage during PDT compared with control conditions. These data suggest that PDT combined with any of the four TCs plus chitosan might be an available tool to kill efficiently planktonic form of C. difficile.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3