Pathogenicity of Aspergillus Airborne Fungal Species Collected from Indoor and Outdoor Public Areas in Tianjin, China

Author:

Nafis Md M. H.1ORCID,Quach Ziwei M.1,Al-Shaarani Amran A. Q. A.1ORCID,Muafa Mohammed H. M.1ORCID,Pecoraro Lorenzo1ORCID

Affiliation:

1. School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China

Abstract

Airborne fungi play an important role in air pollution and may have various negative effects on human health. In particular, Aspergillus fungi are pathogenic to humans and several domestic animals. In this work, Aspergillus strains isolated from airborne fungal communities sampled from different indoor and outdoor environments in Tianjin University were tested for pathogenicity on Drosophila melanogaster. Airborne fungi were sampled using an HAS-100B air sampler, over a one-year sampling period. Isolated fungal strains were identified based on morphological and molecular analysis. The Aspergillus-centered study was conducted as part of a larger work focusing on the total airborne fungal community in the analyzed environments, which yielded 173 fungal species. In this context, the genus Aspergillus showed the second-highest species richness, with 14 isolated species. Pathogenicity tests performed on male adults of Drosophila melanogaster through a bodily contact bioassay showed that all analyzed airborne Aspergillus species were pathogenic to fruit flies, with high insect mortality rates and shortened lifespan. All the studied fungi induced 100% mortality of fruit flies within 30 culture days, with one exception constituted by A. creber (39 days), while the shortest lifespan (17 days) was observed in fruit flies treated with A. tubingensis. Our results allow us to hypothesize that the studied airborne fungal species may have a pathogenic effect on humans, given the affinity between fruit flies and the human immune system, and may help to explain the health risk linked with Aspergillus fungi exposure in densely populated environments.

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3