Generation and Characterization of Drug-Resistant Influenza B Viruses Selected In Vitro with Baloxavir Acid

Author:

Saim-Mamoun AmelORCID,Abed Yacine,Carbonneau JulieORCID,Boivin GuyORCID

Abstract

Baloxavir marboxil (BXM) is an antiviral drug that targets the endonuclease of the influenza polymerase acidic (PA) protein. Antiviral resistance, mainly mediated by the I38T PA substitution, readily occurs in both A(H1N1) and A(H3N2) viruses following a single dose of BXM. Influenza B resistance to BXM remains poorly documented. We aimed to generate baloxavir-resistant contemporary influenza B/Yamagata/16/1988- and B/Victoria/2/1987-like viruses by in vitro passages under baloxavir acid (BXA) pressure to identify resistance mutations and to characterize the fitness of drug-resistant variants. Influenza B/Phuket/3073/2013 recombinant virus (rg-PKT13, a B/Yamagata/16/1988-like virus) and B/Quebec/MCV-11/2019 (MCV19, a B/Victoria/2/1987-like isolate) were passaged in ST6GalI-MDCK cells in the presence of increasing concentrations of BXA. At defined passages, viral RNA was extracted for sequencing the PA gene. The I38T PA substitution was selected in MCV19 after six passages in presence of BXA whereas no PA change was detected in rg-PKT13. The I38T substitution increased the BXA IC50 value by 13.7-fold in the MCV19 background and resulted in reduced viral titers compared to the wild type (WT) at early time points in ST6GalI-MDCK and at all time-points in human epithelial cells. By contrast, the I38T substitution had no impact on MCV19 polymerase activity, and this mutation was genetically stable over four passages. In conclusion, our results show a similar pathway of resistance to BXA in influenza B viruses highlighting the major role of the I38T PA substitution and suggest that I38T may differently impact the fitness of influenza variants depending on the viral type, subtype, or lineage.

Funder

Canadian Institutes of Health Research

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3