An Abies Extract Containing Nonvolatile Polyphenols Shows Virucidal Activity against SARS-CoV-2 That Is Enhanced in Increased pH Conditions

Author:

Maaroufi Imane1,Jamsransuren Dulamjav2,Hashida Koh3,Matsuda Sachiko2,Ogawa Haruko4ORCID,Takeda Yohei24ORCID

Affiliation:

1. Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan

2. Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan

3. Department of Forest Resources Chemistry, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan

4. Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan

Abstract

Researching the beneficial health properties of wood byproducts can prevent wastage by turning them into valuable resources. In this study, the virucidal activity of two extracts from Abies sachalinensis byproducts, ASE1, and ASE2, against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was investigated. ASE1 is rich in monoterpenoid volatile compounds, whereas ASE2 contains nonvolatile polyphenols. SARS-CoV-2 solutions were mixed with ASE1 or ASE2, and viral titer reduction was evaluated. At their original acidic pH, ASE2 showed stronger virucidal activity than ASE1. The virucidal activity of ASE2 was also significantly enhanced when pH was increased to neutral or basic, which was not the case for ASE1. At a neutral pH, ASE2 induced statistically significant viral titer reduction in 1 min. HCl and NaOH solutions, which had a pH close to that of acidic and basic ASE2 test mixtures, respectively, exhibited no virucidal activity against SARS-CoV-2. Among the SARS-CoV-2 variants, Omicron showed the highest vulnerability to ASE2. Western blotting, RT-PCR, and electron microscopic analysis revealed that neutral ASE2 interacts with SARS-CoV-2 spike proteins and moderately disrupts the SARS-CoV-2 genome and viral envelope. These findings reveal the virucidal potential of ASE2.

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3