NMR Diffusiometry Spectroscopy, a Novel Technique for Monitoring the Micro-Modifications in Bitumen Ageing

Author:

Caputo PaolinoORCID,Shaikhah DlshadORCID,Porto Michele,Loise ValeriaORCID,De Santo Maria Penelope,Oliviero Rossi CesareORCID

Abstract

In the past three decades, several conventional methods have been employed for characterizing the bitumen ageing phenomenon, such as rheological testing, ultraviolet testing, gel permeation chromatography (GPC), gas chromatography (GC), atomic force microscopy (AFM), X-ray scattering, and Fourier transform infrared spectroscopy (FTIR). Nevertheless, these techniques can provide only limited observations of the structural micro-modifications occurring during bitumen ageing. In this study, Fourier transform nuclear magnetic resonance self-diffusion coefficient (FT-NMR-SDC) spectroscopy, as a novel method, was employed to investigate and compare the microstructural changes between virgin bitumen (pristine bitumen) and aged bitumen. The virgin bitumen was aged artificially using two standard ageing tests: Rolling Thin-Film Oven Test (RTFOT) and Pressure Ageing Vessel (PAV). For a comprehensive comparison and an assessment of the validity of this method, the generated samples were studied using various methods: rheological test, atomic force microscopy, and optical microscopy. Significant differences were obtained between the structure and ageing patterns of virgin and aged bitumen. The results indicate that the modification of maltenes to asphaltenes is responsible for the ageing character. When compared with the other methods’ findings, FT-NMR-SDC observations confirm that the asphaltene content increases during ageing processes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3