Bonding Behaviors of GFRP/Steel Bonded Joints after Wet–Dry Cyclic and Hygrothermal Curing

Author:

Liu Jie,Guo Tong,Hebdon Matthew H.ORCID,Liu Zhongxiang,Wang Libin

Abstract

This paper presents the outcomes of a research program that tested and examined the behaviors of glass fiber-reinforced polymer (GFRP) bonded steel double-strap joints after being cured in a variety of harsh curing conditions. Nineteen specimens were manufactured, cured in an air environment (the reference specimen), treated with different wet–dry cyclic curing or hygrothermal pretreatment, and then tested under quasi-static loading. Based on the experimental studies, mixed failure modes, rather than the cohesive failure of the adhesive, were found in the harsh environmental cured specimens. Additionally, an approximately linear relationship of load–displacement curves was observed for all the GFRP/steel bonded specimens from which the tensile capacities and stiffness were discussed. By analyzing the strain development of the bonded specimens during quasi-static tensile testing, the fracture mechanism analysis focused on the threshold value of the strain curves for different cured specimens. Finally, based on the studies of interfacial fracture energy, Gf, the effects of harsh environmental curing were assessed. The results showed that the failure modes, joint tensile capacities, stiffness, and interfacial fracture energy Gf were highly dependent on the curing conditions, and a significant degradation of bonding performance could be introduced by the investigated harsh environments.

Funder

Scientific Research Foundation of the Graduate School of Southeast University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3