Degradation and Protection of Materials from Cavitation Erosion: A Review

Author:

Krella Alicja Krystyna1ORCID

Affiliation:

1. Institute of Fluid Flow Machinery PAS, Fiszera 14, 80-231 Gdańsk, Poland

Abstract

The phenomena of cavitation and cavitation erosion affect hydraulic machines, increasing their maintenance costs. Both these phenomena and also the methods of preventing the destruction of materials are presented. The compressive stress in the surface layer created from the implosion of cavitation bubbles depends on the aggressiveness of the cavitation, which in turn depends on the test device and test conditions, and also affects the erosion rate. Comparing the erosion rates of different materials tested using different tests devices, the correlation with material hardness was confirmed. However, no one simple correlation was obtained but rather several were achieved. This indicates that in addition to hardness, cavitation erosion resistance is also affected by other properties, such as ductility, fatigue strength and fracture toughness. Various methods such as plasma nitriding, shot peening, deep rolling and coating deposition used to increase resistance to cavitation erosion by increasing the hardness of the material surface are presented. It is shown that the improvement depends on the substrate, coating material and test conditions, but even using the same materials and test conditions large differences in the improvement can be sometimes gained. Moreover, sometimes a slight change in the manufacturing conditions of the protective layer or coating component can even contribute to a deterioration in resistance compared with the untreated material. Plasma nitriding can improve resistance by even 20 times, but in most cases, the improvement was about two-fold. Shot peening or friction stir processing can improve erosion resistance up to five times. However, such treatment introduces compressive stresses into the surface layer, which reduces corrosion resistance. Testing in a 3.5% NaCl solution showed a deterioration of resistance. Other effective treatments were laser treatment (an improvement from 1.15 times to about 7 times), the deposition of PVD coatings (an improvement of up to 40 times) and HVOF coatings or HVAF coatings (an improvement of up to 6.5 times). It is shown that the ratio of the coating hardness to the hardness of the substrate is also very important, and for a value greater than the threshold value, the improvement in resistance decreases. A thick, hard and brittle coating or alloyed layer may impair the resistance compared to the untreated substrate material.

Publisher

MDPI AG

Subject

General Materials Science

Reference129 articles.

1. Noon, A.A., and Kim, M. (2021). Cavitation Erosion Francis Turbines―Review Sediment. Enegies, 14.

2. Cavitation research and ship propeller design;Kuiper;Appl. Sci. Res.,1997

3. Acoustic cavitation and its consequences;Suslick;Philos. Trans. R. Soc. A,1999

4. Cavitation erosion of materials;Karimi;Int. Mater. Rev.,1986

5. Van Terwisga, T.J.C., Fitzsimmons, P.A., Ziru, L., and Foeth, E.J. (2009, January 16–20). Cavitation Erosion―A review of physical mechanisms and erosion risk models. Proceedings of the 7th International Symposium on Cavitation, Ann Arbor, MI, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3