Genome-Wide Identification and Expression Analysis of Fatty Acid Desaturase (FAD) Genes in Camelina sativa (L.) Crantz

Author:

Sun DaqianORCID,Quan Weizhu,Wang Di,Cui Jingyan,Wang Tianyi,Lin Mei,Wang Yijin,Wang Nan,Dong Yuanyuan,Li Xiaowei,Liu Weican,Wang Fawei

Abstract

Camelina sativa (L.) Crantz is an indispensable oilseed crop, and its seeds contain many unsaturated fatty acids. FAD (fatty acid desaturase) regulates the synthesis of unsaturated fatty acids. In this research, we performed CsFAD gene family analysis and identified 24 CsFAD genes in Camelina, which were unevenly distributed on 14 of the 19 total chromosomes. Phylogenetic analysis showed that CsFAD includes four subfamilies, supported by the conserved structures and motifs of CsFAD genes. In addition, we investigated the expression patterns of the FAD family in the different tissues of Camelina. We found that CsFAD family genes were all expressed in the stem, and CsFAD2-2 was highly expressed in the early stage of seed development. Moreover, during low temperature (4 °C) stress, we identified that the expression level of CsFAD2-2 significantly changed. By observing the transient expression of CsFAD2-2 in Arabidopsis protoplasts, we found that CsFAD2-2 was located on the nucleus. Through the detection and analysis of fatty acids, we prove that CsFAD2-2 is involved in the synthesis of linolenic acid (C18:3). In conclusion, we identified CsFAD2-2 through the phylogenetic analysis of the CsFAD gene family and further determined the fatty acid content to find that CsFAD2-2 is involved in fatty acid synthesis in Camelina.

Funder

Science and Technology Department of Jilin Province

The Science and Technology Development Project of Jilin Province

Science and Technology Research program of the Education Department of Jilin Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference54 articles.

1. Camelina production parameters response to different irrigation regimes;Ind. Crops Prod.,2020

2. Genetic analysis of freezing tolerance in camelina [Camelina sativa (L.) Crantz] by diallel cross of winter and spring biotypes;Planta,2021

3. Shifting sowing of camelina from spring to autumn enhances the oil Qual. for bio-based applications in response to temperature and seed carbon stock;Ind. Crops Prod.,2019

4. Camelina-derived jet fuel and diesel: Sustainable advanced biofuels;Environ. Prog. Sustain. Energy,2010

5. Diseases of Camelina sativa (false flax);Can. J. Plant Pathol.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3