An Edge Transfer Learning Approach for Calibrating Soil Electrical Conductivity Sensors

Author:

Lin Yun-Wei1,Lin Yi-Bing123456ORCID,Chang Ted C.-Y.7,Lu Bo-Xun1

Affiliation:

1. College of Artificial Intelligence, National Yang Ming Chiao Tung University, Tainan 711, Taiwan

2. College of Humanities and Sciences, China Medical University, Taichung 406, Taiwan

3. Miin Wu School of Computing, National Cheng Kung University, Tainan 701, Taiwan

4. College of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan

5. Department of Computer Science and Information Engineering, Asia University, Taichung 413, Taiwan

6. Research Center for Information Technology Innovation, Academia Sinica, Taipei 115, Taiwan

7. Quanta Computer Co., Ltd., Taoyuan 333, Taiwan

Abstract

Smart agriculture utilizes Internet of Things (IoT) technologies to enable low-cost electrical conductivity (EC) sensors to support farming intelligence. Due to aging and changes in weather and soil conditions, EC sensors are prone to long-term drift over years of operation. Therefore, regular recalibration is necessary to ensure data accuracy. In most existing solutions, an EC sensor is calibrated by using the standard sensor to build the calibration table. This paper proposes SensorTalk3, an ensemble approach of machine learning models including XGBOOST and Random Forest, which can be executed at an edge device (e.g., Raspberry Pi) without GPU acceleration. Our study indicates that the soil information (both temperature and moisture sensor data) plays an important role in SensorTalk3, which significantly outperforms the existing calibration approaches. The MAPE of SensorTalk3 can be as low as 1.738%, compared to the 7.792% error of the original sensor. Our study indicates that when the errors of uncalibrated moisture and temperature sensors are not larger than 8.3%, SensorTalk3 can accurately calibrate EC. SensorTalk3 can perform model training during data collection at the edge node. When all training data are collected, AI training is also finished at the edge node. Such an AI training approach has not been found in existing edge AI approaches. We also proposed the dual-sensor detection solution to determine when to conduct recalibration. The overhead of this solution is less than twice the optimal detection scenario (which cannot be achieved practically). If the two non-standard sensors are homogeneous and stable, then the optimal detection scenario can be approached. Conventional methods require training calibration AI models in the cloud. However, SensorTalk3 introduces a significant advancement by enabling on-site transfer learning in the edge node. Given the abundance of farming sensors deployed in the fields, performing local transfer learning using low-cost edge nodes proves to be a more cost-effective solution for farmers.

Funder

National Science and Technology Council

NCKU Miin Wu School of Computing, Research Center for Information Technology Innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3