Field Study and Chemical Analysis of Plant Waste in the Fez-Meknes Region, Morocco

Author:

Bendaoud AhmedORCID,Lahkimi AmalORCID,Kara MohammedORCID,Moubchir Tarik,Assouguem AmineORCID,Belkhiri Abdelkhalek,Allali AimadORCID,Hmamou Anouar,Almeer Rafa,Sayed Amany A.,Peluso IlariaORCID,Eloutassi Noureddine

Abstract

Throughout the entire world, the biomass plant remains an important source of renewable energy. However, in Morocco, the energy recovery of this biomass is little or badly exploited compared to other solar, hydraulic, and wind resources. The aim of this study is to know the extent to which Moroccan companies are involved in the valorization of green waste and to identify among the latter those that have great energy and industrial value. The field investigation was carried out with the use of a questionnaire to different sectors of activity. The chemical analyses of the waste samples were carried out by different methods: Van Soest to investigate the fiber content, dinitrosalicylic acid and phenol-sulfuric acid to determine sugars, while the Folin–Ciocalteu method was employed for the determination of phenolic compounds. These are the ASTM standard methods to determine elemental, proximate composition, and calorific value (CV). The results of this survey showed that solid vegetable waste is diverse and represents 68.4% of the total green waste, of which 98% is not treated. Moreover, the chemical analysis displayed that forestry waste (FW), extracted parts wastes (EPW), and unused parts wastes (UPW) of medicinal and aromatic plants have high contents of cellulose (respectively 34.75, 48.44, and 54.19%) and hemicelluloses (28.44, 27.19 and 28.50%) and containing low amounts of lignin and phenolic compounds compared to olive waste (OW), olive pomace (OP), and household waste (HW). Almost all biomass wastes, except HW, have a low moisture (<12%), ash content less than 5.1%, a significant percentage of C and H, and CV between 14.5 and 21.6 MJ/Kg. The PCA analysis showed a discrepancy in terms of components between the set formed by FW, UPW, and EPW with other solid waste. In conclusion, FW, UPW, and EPW, specially can be potentially energetic biomass and valorized together in the form of a mixture.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3