BMAL1 Promotes Valvular Interstitial Cells’ Osteogenic Differentiation through NF-κ B/AKT/MAPK Pathway

Author:

Jiang Yefan1,Wang Song1,Lin Wenfeng1,Gu Jiaxi1,Li Geng2,Shao Yongfeng1

Affiliation:

1. Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road, No. 300, Nanjing 210029, China

2. Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road, No. 1277, Wuhan 430022, China

Abstract

Objectives: Calcific aortic valve disease (CAVD) is most common in the aging population and is without effective medical treatments. Brain and muscle ARNT-like 1 (BMAL1) is related to calcification. It has unique tissue-specific characteristics and plays different roles in different tissues’ calcification processes. The purpose of the present study is to explore the role of BMAL1 in CAVD. Methods: The protein levels of BMAL1 in normal and calcified human aortic valves and valvular interstitial cells (VICs) isolated from normal and calcified human aortic valves were checked. HVICs were cultured in osteogenic medium as an in vitro model, and BMAL1 expression and location were detected. TGF-β and RhoA/ROCK inhibitors and RhoA-siRNA were applied to detect the mechanism underlying the source of BMAL1 during HVICs’ osteogenic differentiation. ChIP was applied to check whether BMAL1 could directly interact with the runx2 primer CPG region, and the expression of key proteins involved in the TNF signaling pathway and NF-κ B pathway was tested after silencing BMAL1. Results: In this study, we found that BMAL1 expression was elevated in calcified human aortic valves and VICs isolated from calcified human aortic valves. Osteogenic medium could promote BMAL1 expression in HVICs and the knockdown of BMAL1 induced the inhibition of HVICs’ osteogenic differentiation. Furthermore, the osteogenic medium promoting BMAL1 expression could be blocked by TGF-β and RhoA/ROCK inhibitors and RhoA-siRNA. Meanwhile, BMAL1 could not bind with the runx2 primer CPG region directly, but knockdown of BMAL1 led to decreased levels of P-AKT, P-IκBα, P-p65 and P-JNK. Conclusions: Osteogenic medium could promote BMAL1 expression in HVICs through the TGF-β/RhoA/ROCK pathway. BMAL1 could not act as a transcription factor, but functioned through the NF-κ B/AKT/MAPK pathway to regulate the osteogenic differentiation of HVICs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3