Real-Time Hybrid Navigation System-Based Path Planning and Obstacle Avoidance for Mobile Robots

Author:

Gia Luan PhanORCID,Thinh Nguyen Truong

Abstract

In this work, we present a complete hybrid navigation system for a two-wheel differential drive mobile robot that includes static-environment- global-path planning and dynamic environment obstacle-avoidance tasks. By the given map, we propose a multi-agent A-heuristic algorithm for finding the optimal obstacle-free path. The result is less time-consuming and involves fewer changes in path length when dealing with multiple agents than the ordinary A-heuristic algorithm. The obtained path was smoothed based on curvature-continuous piecewise cubic Bézier curve (C2 PCBC) before being used as a trajectory by the robot. In the second task of the robot, we supposed any unforeseen obstacles were recognized and their moving frames were estimated by the sensors when the robot tracked on the trajectory. In order to adapt to the dynamic environment with the presence of constant velocity obstacles, a weighted-sum model (WSM) was employed. The 2D LiDAR data, the robot’s frame and the detected moving obstacle’s frame were collected and fed to the WSM during the movement of the robot. Through this information, the WSM chose a temporary target and a C2 PCBC-based subtrajectory was generated that led the robot to avoid the presented obstacle. Experimentally, the proposed model responded well in existing feasible solution cases with fine-tuned model parameters. We further provide the re-path algorithm that helped the robot track on the initial trajectory. The experimental results show the real-time performance of the system applied in our robot.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3