Synthesis and Characterization of Hollow Glass Sphere Containing Aluminum Syntactic Foam by Spark Plasma Sintering and Hot Pressing

Author:

Son Yong Guk,Lee Young Cheol,Jung Sung Su,Kwon Han Sang,Lee Wookjin,Park Yongho

Abstract

The effect of sintering process on the microstructure and the mechanical properties of aluminum syntactic foam were investigated in this study. Two different sintering processes of spark plasma sintering and hot pressing were used. Glass hollow spheres with a size of 50–80 μm was used to fabricate the foams having various volume fractions of the spheres in the range of 10–30%. Microstructural analysis revealed that the glass hollow spheres were uniformly distributed in the aluminum matrix, both in the spark plasma sintered and hot pressed ones. As the volume fraction of the spheres increased from 10 to 30%, the density, micro-hardness and compressive strength of the foams were decreased. In comparison to the foams fabricated by hot pressing method, the spark plasma sintered foams had slightly lower density and mechanical strength. In nanoindentation study, it was found that the aluminum matrix in the foam prepared by the spark plasma sintering process had lower strength than foam prepared by the hot pressing process. This is likely because of shorter sintering time used in the spark plasma sintering process than the hot pressing.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference25 articles.

1. Metal. Matrix Syntactic Foams: Processing, Microstructure, Properties and Applications;Gupta,2015

2. Aluminum Syntactic Foams Alfa for Automotive Applications;Singh;J. KONES Intern. Combust. Engines,2003

3. Compressive behavior of Al matrix syntactic foams toughened with Al particles

4. Interfacial microstructure and compressive properties of Al–Mg syntactic foam reinforced with glass cenospheres

5. Fabrication and characterisation of Al–7Si–0.35Mg/fly ash metal matrix composites processed by different stir casting routes

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3