Research on Dynamic Response under the External Impact of Paper Honeycomb Sandwich Board

Author:

Lin Lehao1,Hu Jingjing1,Li Danyang1,Zhang Gaimei1ORCID,Liu Hui1,Song Xiaoli1,Lu Jiandong1,Shi Jiazi1

Affiliation:

1. School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China

Abstract

The dynamic mechanical behavior and cushioning performance of honeycomb sandwich panels, which are extensively employed in product cushioning packaging due to their exceptional energy absorption capabilities, were examined using a combination of experimental and numerical methods. Several factors, such as maximum acceleration–static stress, cushioning coefficient–static stress, and other curves, were analyzed under various impact conditions. The simulated stress–strain, deformation modes, cushioning coefficients, and other parameters demonstrate consistency with the experimental results. The acceleration, maximum compression, and cushioning coefficient obtained from the experiment and simulation calculation were 30.68 g, 15.44 mm, and 2.65, and 31.96 g, 14.91 mm, and 2.79, respectively. The results indicate that all error values were less than 5%, confirming the precision and reliability of the model. Furthermore, the model was utilized to simulate and predict the cushioning performance of honeycomb sandwich panels with different cell structures and paper thicknesses. These results provide a solid basis for enhancing the design of subsequent honeycomb element structures.

Funder

Key Lab of Intelligent and Green Flexographic Printing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3