VizTract: Visualization of Complex Social Networks for Easy User Perception

Author:

Akula Ramya,Garibay IvanORCID

Abstract

Social networking platforms connect people from all around the world. Because of their user-friendliness and easy accessibility, their traffic is increasing drastically. Such active participation has caught the attention of many research groups that are focusing on understanding human behavior to study the dynamics of these social networks. Oftentimes, perceiving these networks is hard, mainly due to either the large size of the data involved or the ineffective use of visualization strategies. This work introduces VizTract to ease the visual perception of complex social networks. VizTract is a two-level graph abstraction visualization tool that is designed to visualize both hierarchical and adjacency information in a tree structure. We use the Facebook dataset from the Social Network Analysis Project from Stanford University. On this data, social groups are referred as circles, social network users as nodes, and interactions as edges between the nodes. Our approach is to present a visual overview that represents the interactions between circles, then let the user navigate this overview and select the nodes in the circles to obtain more information on demand. VizTract aim to reduce visual clutter without any loss of information during visualization. VizTract enhances the visual perception of complex social networks to help better understand the dynamics of the network structure. VizTract within a single frame not only reduces the complexity but also avoids redundancy of the nodes and the rendering time. The visualization techniques used in VizTract are the force-directed layout, circle packing, cluster dendrogram, and hierarchical edge bundling. Furthermore, to enhance the visual information perception, VizTract provides interaction techniques such as selection, path highlight, mouse-hover, and bundling strength. This method helps social network researchers to display large networks in a visually effective way that is conducive to ease interpretation and analysis. We conduct a study to evaluate the user experience of the system and then collect information about their perception via a survey. The goal of the study is to know how humans can interpret the network when visualized using different visualization methods. Our results indicate that users heavily prefer those visualization techniques that aggregate the information and the connectivity within a given space, such as hierarchical edge bundling.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Reference26 articles.

1. {SNAP Datasets}:{Stanford} Large Network Dataset Collectionhttps://snap.stanford.edu/data/

2. Information Visualization: Perception for Design;Ware,2012

3. D³ Data-Driven Documents

4. Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data

5. A Practical Guide to Splines;De Boor,1978

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3