Mitigation of Dextran-Sodium-Sulfate-Induced Colitis in Mice through Oral Administration of Microbiome-Derived Inosine and Its Underlying Mechanisms

Author:

Guo Weiling12,Tang Xin12,Zhang Qiuxiang12ORCID,Zhao Jianxin12,Mao Bingyong12,Zhang Hao123,Cui Shumao123

Affiliation:

1. State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China

2. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

3. National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China

Abstract

Background: Colonic and serum inosine are significantly reduced in patients with inflammatory bowel disease (IBD). Methods: This study aimed to explore whether microbiome-derived inosine alleviates colitis and its underlying mechanisms. Results: An inosine intervention effectively improved the clinical signs in colitis mice, suppressed inflammatory cytokines (tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1β) by regulating the nuclear factor-kappa B (NF-κB) pathway, and elevated the activities of anti-oxidative enzymes (including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px)) by regulating the nuclear factor erythroid-2 related factor 2 (Nrf2) pathway. Additionally, the inosine intervention significantly elevated the expression of tight junction proteins (ZO-1, occudin, and claudin-1) in mice with colitis. High-throughput sequencing revealed that the inosine intervention also prevented gut microbiota disorder by increasing the abundance of beneficial bacteria (Lachnospiraceae NK4A136 group, Romboutsia, Marvinbryantia, Clostridium sensu stricto 1, and Bifidobacterium) and reducing the abundance of harmful bacteria (Pseudomonas, Acinetobacter, and Tyzzerella) in mice with colitis. Conclusions: Inosine played a significant role in mitigating colitis-related intestinal barrier injury and could potentially be used for therapy in clinical practice.

Funder

Yongjiang Talent Introduction Programme

Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference44 articles.

1. GBD 2017 Inflammatory Bowel Disease Collaborators (2020). The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol., 5, 17–30.

2. Prevalence of inflammatory bowel disease among adults aged >/=18 years-united states, 2015;Dahlhamer;MMWR-Morb. Mortal. Wkly. Rep.,2016

3. The impact of alcohol in inflammatory bowel diseases;White;Inflamm. Bowel Dis.,2022

4. Guo, W., Mao, B., Cui, S., Tang, X., Zhang, Q., Zhao, J., and Zhang, H. (2022). Protective effects of a novel probiotic Bifidobacterium pseudolongum on the intestinal barrier of colitis mice via modulating the Pparγ/STAT3 pathway and intestinal microbiota. Foods, 11.

5. Andrographolide sodium bisulfite ameliorates dextran sulfate sodium-induced colitis and liver injury in mice via inhibiting macrophage proinflammatory polarization from the gut-liver axis;Guan;Int. Immunopharmacol.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3