A Putative Role of Vasopressin/Oxytocin-Type Neuropeptide in Osmoregulation and Feeding Inhibition of Apostichopus japonicus

Author:

Cong Xiao1,Liu Huachen1,Zheng Yingqiu1,Chen Muyan1

Affiliation:

1. The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China

Abstract

Vasopressin/oxytocin (VP/OT)-type neuropeptide is an ancient neurophysin-associated neuropeptide and has been intensively studied to be involved in multiple physiological processes in protostomian and deuterostome vertebrates. However, little is known about the functions of VP/OT-type neuropeptide in deuterostome invertebrates especially in echinoderms. Here, we firstly report VP/OT-type neuropeptide signaling in an important economic species, Apostichopus japonicus, which is widely cultured in Asia, with high nutritional and medicinal values. Molecular characterization analysis of holotocin and its precursor revealed the highly conserved features of VP/OT family. The candidate receptor for holotocin (AjHOR) was confirmed to be able to activate the signaling via cAMP-PKA and possible Ca2+-PKC pathway, and further activated the downstream ERK1/2 cascade. Holotocin precursor expression profile showed that they were mainly concentrated in circumoral nerve ring. Furthermore, in vitro pharmacological experiments demonstrated that holotocin caused contractile responses in preparations from A. japonicus. And in vivo functional studies indicated that short-term injection of holotocin resulted in body bloat and long-term injection resulted in reduced body mass, suggesting potential roles of holotocin in osmoregulation and feeding co-inhibition with holotocin–CCK. Our findings provided a comprehensive description of AjHOR–holotocin signaling, revealed ancient roles of holotocin in osmoregulation and feeding inhibition by controlling muscle contractions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3