Molecular Insight into Iron Homeostasis of Acute Myeloid Leukemia Blasts

Author:

Pourcelot Emmanuel12,El Samra Ghina1,Mossuz Pascal23,Moulis Jean-Marc14ORCID

Affiliation:

1. Laboratory of Fundamental and Applied Bioenergetics (LBFA), University Grenoble Alpes, INSERM U1055, 38000 Grenoble, France

2. Department of Biological Hematology, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043 Grenoble, CEDEX a9, France

3. Team “Epigenetic and Cellular Signaling”, Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700 Grenoble, France

4. University Grenoble Alpes, CEA, IRIG, 38000 Grenoble, France

Abstract

Acute myeloid leukemia (AML) remains a disease of gloomy prognosis despite intense efforts to understand its molecular foundations and to find efficient treatments. In search of new characteristic features of AML blasts, we first examined experimental conditions supporting the amplification of hematological CD34+ progenitors ex vivo. Both AML blasts and healthy progenitors heavily depended on iron availability. However, even if known features, such as easier engagement in the cell cycle and amplification factor by healthy progenitors, were observed, multiplying progenitors in a fully defined medium is not readily obtained without modifying their cellular characteristics. As such, we measured selected molecular data including mRNA, proteins, and activities right after isolation. Leukemic blasts showed clear signs of metabolic and signaling shifts as already known, and we provide unprecedented data emphasizing disturbed cellular iron homeostasis in these blasts. The combined quantitative data relative to the latter pathway allowed us to stratify the studied patients in two sets with different iron status. This categorization is likely to impact the efficiency of several therapeutic strategies targeting cellular iron handling that may be applied to eradicate AML blasts.

Funder

Plan Cancer Biologie des Systèmes

Ligue contre le Cancer

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3