Nuclear NPM-ALK Protects Myc from Proteasomal Degradation and Contributes to Its High Expression in Cancer Stem-Like Cells in ALK-Positive Anaplastic Large Cell Lymphoma

Author:

Shang Chuquan1ORCID,Lai Justine2ORCID,Haque Moinul13,Chen Will1,Wang Peng24,Lai Raymond14ORCID

Affiliation:

1. Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada

2. Department of Medicine, Division of Hematology, University of Alberta, Edmonton, AB T6G 2R3, Canada

3. Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA

4. Department of Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada

Abstract

In ALK-positive anaplastic large cell lymphoma (ALK+ALCL), a small subset of cancer stem-like (or RR) cells characterized by high Myc expression have been identified. We hypothesize that NPM-ALK contributes to their high Myc expression. While transfection of NPM-ALK into HEK293 cells effectively increased Myc by inhibiting its proteasomal degradation (PD-Myc), this effect was dramatically attenuated when the full-length NPM1 (FL-NPM1) was downregulated using shRNA, highlighting the importance of the NPM-ALK:FL-NPM1 heterodimers in this context. Consistent with this concept, immunoprecipitation experiments showed that the heterodimers are abundant only in RR cells, in which the half-life of Myc is substantially longer than the bulk cells. Fbw7γ, a key player in PD-Myc, is sequestered by the heterodimers in RR cells, and this finding correlates with a Myc phosphorylation pattern indicative of ineffective PD-Myc. Using confocal microscopy and immunofluorescence staining, we found that the fusion signal between ALK and FL-NPM1, characteristic of the heterodimers, correlates with the Myc level in ALK+ALCL cells from cell lines and patient samples. To conclude, our findings have revealed a novel oncogenic function of NPM-ALK in the nucleus. Specifically, the NPM-ALK:FL-NPM1 heterodimers increase cancer stemness by blocking PD-Myc and promoting Myc accumulation in the cancer stem-like cell subset.

Funder

University of Alberta internal research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3