Dual-Target Mycobacterium tuberculosis Inhibition: Insights into the Molecular Mechanism of Antifolate Drugs

Author:

Ramharack Pritika12,Salifu Elliasu Y.1ORCID,Agoni Clement23ORCID

Affiliation:

1. Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa

2. Discipline of Pharmaceutical Sciences, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa

3. UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Belfield, Ireland

Abstract

The escalating prevalence of drug-resistant strains of Mycobacterium tuberculosis has posed a significant challenge to global efforts in combating tuberculosis. To address this issue, innovative therapeutic strategies are required that target essential biochemical pathways while minimizing the potential for resistance development. The concept of dual targeting has gained prominence in drug discovery against resistance bacteria. Dual targeting recognizes the complexity of cellular processes and disrupts more than one vital pathway, simultaneously. By inhibiting more than one essential process required for bacterial growth and survival, the chances of developing resistance are substantially reduced. A previously reported study investigated the dual-targeting potential of a series of novel compounds against the folate pathway in Mycobacterium tuberculosis. Expanding on this study, we investigated the predictive pharmacokinetic profiling and the structural mechanism of inhibition of UCP1172, UCP1175, and UCP1063 on key enzymes, dihydrofolate reductase (DHFR) and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5′-phosphate reductase (RV2671), involved in the folate pathway. Our findings indicate that the compounds demonstrate lipophilic physiochemical properties that promote gastrointestinal absorption, and may also inhibit the drug-metabolizing enzyme, cytochrome P450 3A4, thus enhancing their biological half-life. Furthermore, key catalytic residues (Serine, Threonine, and Aspartate), conserved in both enzymes, were found to participate in vital molecular interactions with UCP1172, which demonstrated the most favorable free binding energies to both DHFR and RV2671 (−41.63 kcal/mol, −48.04 kcal/mol, respectively). The presence of characteristic loop shifts, which are similar in both enzymes, also indicates a common inhibitory mechanism by UCP1172. This elucidation advances the understanding of UCP1172’s dual inhibition mechanism against Mycobacterium tuberculosis.

Funder

National Research Foundation SARChI-linked fellowship

South African Medical Research Council (SAMRC) biomedical and research innovation platform

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference43 articles.

1. World Health Organization (WHO) (2022). Global Tuberculosis Report, World Health Organization.

2. Tuberculosis;Furin;Lancet,2019

3. Drug-Resistant Tuberculosis;Seung;Cold Spring Harb. Perspect. Med.,2015

4. Bedaquiline–Pretomanid–Linezolid Regimens for Drug-Resistant Tuberculosis;Conradie;N. Engl. J. Med.,2022

5. Multi-Target Pharmacology: Possibilities and Limitations of the “Skeleton Key Approach” from a Medicinal Chemist Perspective;Talevi;Front. Pharmacol.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3