Development of Stable Amino-Pyrimidine–Curcumin Analogs: Synthesis, Equilibria in Solution, and Potential Anti-Proliferative Activity

Author:

Mari Matteo1,Boniburini Matteo1ORCID,Tosato Marianna12ORCID,Rigamonti Luca1ORCID,Cuoghi Laura3,Belluti Silvia3ORCID,Imbriano Carol3ORCID,Avino Giulia1,Asti Mattia2ORCID,Ferrari Erika1ORCID

Affiliation:

1. Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy

2. Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy

3. Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/d, 41125 Modena, Italy

Abstract

With the clear need for better cancer treatment, naturally occurring molecules represent a powerful inspiration. Recently, curcumin has attracted attention for its pleiotropic anticancer activity in vitro, especially against colorectal and prostate cancer cells. Unfortunately, these encouraging results were disappointing in vivo due to curcumin’s low stability and poor bioavailability. To overcome these issues, herein, the synthesis of eight new pyrimidine–curcumin derivatives is reported. The compounds were fully characterized (1H/13C NMR (Nuclear Magnetic Resonance), LC-MS (Liquid Chromatography-Mass Spectrometri), UV-Vis spectroscopy), particularly their acid/base behavior; overall protonation constants were estimated, and species distribution, as a function of pH, was predicted, suggesting that all the compounds are in their neutral form at pH 7.4. All the compounds were extremely stable in simulated physiological media (phosphate-buffered saline and simulated plasma). The compounds were tested in vitro (48 h incubation treatment) to assess their effect on cell viability in prostate cancer (LNCaP and PC3) and colorectal cancer (HT29 and HCT116) cell lines. Two compounds showed the same anti-proliferative activity as curcumin against HCT116 cells and improved cytotoxicity against PC3 cells.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3