Current Status of Next-Generation Sequencing in Bone Genetic Diseases

Author:

Aida Natsuko1ORCID,Saito Akiko1,Azuma Toshifumi12

Affiliation:

1. Department of Biochemistry, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan

2. Oral Health Science Center, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan

Abstract

The development of next-generation sequencing (NGS) has dramatically increased the speed and volume of genetic analysis. Furthermore, the range of applications of NGS is rapidly expanding to include genome, epigenome (such as DNA methylation), metagenome, and transcriptome analyses (such as RNA sequencing and single-cell RNA sequencing). NGS enables genetic research by offering various sequencing methods as well as combinations of methods. Bone tissue is the most important unit supporting the body and is a reservoir of calcium and phosphate ions, which are important for physical activity. Many genetic diseases affect bone tissues, possibly because metabolic mechanisms in bone tissue are complex. For instance, the presence of specialized immune cells called osteoclasts in the bone tissue, which absorb bone tissue and interact with osteoblasts in complex ways to support normal vital functions. Moreover, the many cell types in bones exhibit cell-specific proteins for their respective activities. Mutations in the genes encoding these proteins cause a variety of genetic disorders. The relationship between age-related bone tissue fragility (also called frailty) and genetic factors has recently attracted attention. Herein, we discuss the use of genomic, epigenomic, transcriptomic, and metagenomic analyses in bone genetic disorders.

Funder

JSPS KAKENHI

Private University Research Branding Project from MEXT of Japan

Promotion and Mutual Aid Corporation for Private School of Japan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3