Rapamycin as a Potential Alternative Drug for Squamous Cell Gingiva Carcinoma (Ca9-22): A Focus on Cell Cycle, Apoptosis and Autophagy Genetic Profile

Author:

Papadakos Sofia1,Issa Hawraa1ORCID,Alamri Abdulaziz2ORCID,Alamri Abdullah2ORCID,Semlali Abdelhabib1ORCID

Affiliation:

1. Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada

2. Biochemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

Oral cancer is considered as one of the most common malignancies worldwide. Its conventional treatment primarily involves surgery with or without postoperative adjuvant therapy. The targeting of signaling pathways implicated in tumorigenesis is becoming increasingly prevalent in the development of new anticancer drug candidates. Based on our recently published data, Rapamycin, an inhibitor of the mTOR pathway, exhibits selective antitumor activity in oral cancer by inhibiting cell proliferation and inducing cancer cell apoptosis, autophagy, and cellular stress. In the present study, our focus is on elucidating the genetic determinants of Rapamycin’s action and the interaction networks accountable for tumorigenesis suppression. To achieve this, gingival carcinoma cell lines (Ca9-22) were exposed to Rapamycin at IC50 (10 µM) for 24 h. Subsequently, we investigated the genetic profiles related to the cell cycle, apoptosis, and autophagy, as well as gene–gene interactions, using QPCR arrays and the Gene MANIA website. Overall, our results showed that Rapamycin at 10 µM significantly inhibits the growth of Ca9-22 cells after 24 h of treatment by around 50% by suppression of key modulators in the G2/M transition, namely, Survivin and CDK5RAP1. The combination of Rapamycin with Cisplatin potentializes the inhibition of Ca9-22 cell proliferation. A P1/Annexin-V assay was performed to evaluate the effect of Rapamycin on cell apoptosis. The results obtained confirm our previous findings in which Rapamycin at 10 μM induces a strong apoptosis of Ca9-22 cells. The live cells decreased, and the late apoptotic cells increased when the cells were treated by Rapamycin. To identify the genes responsible for cell apoptosis induced by Rapamycin, we performed the RT2 Profiler PCR Arrays for 84 apoptotic genes. The blocked cells were believed to be directed towards cell death, confirmed by the downregulation of apoptosis inhibitors involved in both the extrinsic and intrinsic pathways, including BIRC5, BNIP3, CD40LG, DAPK1, LTA, TNFRSF21 and TP73. The observed effects of Rapamycin on tumor suppression are likely to involve the autophagy process, evidenced by the inhibition of autophagy modulators (TGFβ1, RGS19 and AKT1), autophagosome biogenesis components (AMBRA1, ATG9B and TMEM74) and autophagy byproducts (APP). Identifying gene–gene interaction (GGI) networks provided a comprehensive view of the drug’s mechanism and connected the studied tumorigenesis processes to potential functional interactions of various kinds (physical interaction, co-expression, genetic interactions etc.). In conclusion, Rapamycin shows promise as a clinical agent for managing Ca9-22 gingiva carcinoma cells.

Funder

the Network for Canadian Oral Health and Research

the Researchers Supporting Project

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Reference74 articles.

1. World Health Organization (2022). WHO Highlights Oral Health Neglect Affecting Nearly Half of the World’s Population, World Health Organization. Global Oral Health Status Report 2022.

2. Epidemiologic aspects of oral cancer;Sarode;Dis. Mon.,2020

3. National Cancer Institute (2021). Side Effects of Cancer Treatment, National Cancer Institute.

4. Interventions for the treatment of oral cavity and oropharyngeal cancer: Chemotherapy;Parmar;Cochrane Database Syst. Rev.,2021

5. Cisplatin in cancer therapy: Molecular mechanisms of action;Dasari;Eur. J. Pharmacol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3