FGFC1 Exhibits Anti-Cancer Activity via Inhibiting NF-κB Signaling Pathway in EGFR-Mutant NSCLC Cells

Author:

Feng Jingwen,Li Songlin,Zhang Bing,Duan Namin,Zhou Rui,Yan Shike,Elango JeevithanORCID,Liu Ning,Wu WenhuiORCID

Abstract

FGFC1, an active compound isolated from the culture of marine fungi Stachybotrys longispora FG216, elicits fibrinolytic, anti-oxidative, and anti-inflammatory activity. We have previously reported that FGFC1 inhibited the proliferation, migration, and invasion of the non-small cell lung cancer (NSCLC) cells in vitro. However, the precise mechanisms of FGFC1 on NSCLC and its anti-cancer activity in vivo remains unclear. Hence, this study was focused to investigate the effects and regulatory mechanisms of FGFC1 on two NSCLC cell lines, EGFR-mutant PC9 (ex19del) and EGFR wild-type H1299. Results suggested that FGFC1 significantly inhibited proliferation, colony formation, as well as triggered G0/G1 arrest and apoptosis of PC9 cells in a dose- and time-dependent manner, but no obvious inhibitory effects were observed in H1299 cells. Subsequently, transcriptome analysis revealed that FGFC1 significantly down-regulated 28 genes related to the NF-κB pathway, including IL-6, TNF-α, and ICAM-1 in the PC9 cells. We further confirmed that FGFC1 decreased the expression of protein p-IKKα/β, p-p65, p-IκB, IL-6, and TNF-α. Moreover, NF-κB inhibitor PDTC could strengthen the effects of FGFC1 on the expression of CDK4, Cyclin D1, cleaved-PARP-1, and cleaved-caspase-3 proteins, suggesting that the NF-κB pathway plays a major role in FGFC1-induced cell cycle arrest and apoptosis. Correspondingly, the nuclear translocation of p-p65 was also suppressed by FGFC1 in PC9 cells. Finally, the intraperitoneal injection of FGFC1 remarkably inhibited PC9 xenograft growth and decreased the expression of Ki-67, p-p65, IL-6, and TNF-α in tumors. Our results indicated that FGFC1 exerted anti-cancer activity in PC9 cells via inhibiting the NF-κB signaling pathway, providing a possibility for FGFC1 to be used as a lead compound for the treatment of NSCLC in the future.

Funder

Natural Science Foundation of Shanghai

Plan of Innovation Action in Shanghai

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3