Synthesis of Ag-OMS Catalyst for Sunlight-Assisted Photodegradation of Crystal Violet Dye

Author:

Saeed Muhammad1ORCID,Pecho Renzon Daniel Cosme2ORCID,Panchal Sandeep3ORCID,Alhag Sadeq K.4,Al-Shuraym Laila A.5ORCID,Al Syaad Khalid M.6ORCID,Bhutta Usman Hanif1

Affiliation:

1. Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan

2. Department of Biochemistry, Universidad San Ignacio de Loyola (USIL), Lima 15024, Peru

3. Department of Civil Engineering, Government Polytechnic Mankeda, Agra 283102, Uttar Pradesh, India

4. Biology Department, College of Science and Arts, King Khalid University, Abha 63763, Saudi Arabia

5. Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia

6. Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia

Abstract

The contamination of water with organic pollutants, such as dyes, has become a serious threat to the environment. Therefore, the development of a cost-effective, eco-friendly, proficient, and visible-light-driven catalyst for the treatment of organic dye-contaminated wastewater has been a burning issue recently. Photocatalysis is suggested as a potential treatment technique for the eradication of organic pollutants. The 1D tunnel-structured manganese oxide octahedral molecular sieve (OMS) is a suitable substance to be tested as a visible-light-driven photocatalyst for the degradation of organic contaminants. However, the fast recombination of photoinduced charges (h+/e−) limits its photocatalytic application. The development of heterojunctions between OMS and other metals, such as Ag, is a suitable technique for improving the photocatalytic performance of OMS. In this study, Ag-OMS with plasmon-enhanced photocatalytic activity is reported for the photodegradation of crystal violet dye. Manganese oxide OMS was prepared by an acidic precipitation method using potassium permanganate, manganese acetate, and nitric acid as precursor materials. Ag nanoparticles were deposited on OMS using leaf extracts of Calotropis gigantea. The deposition of Ag enhanced the photocatalytic performance of OMS from 68 to 95%. The effects of Ag contents, catalyst dosage, and concentration of crystal violet dye on catalytic performance were explored as well. Approximately 100, 95, and 75% photodegradation of 50, 100, and 150 mg/L crystal violet dye was observed in 90, 120, and 120 min in the presence of 10% Ag-OMS, respectively. Excellent photocatalytic performance, low dose utilization, and reusability proved that Ag-OMS might have practical environmental applications.

Funder

Princess Nourah bint Abdulrahman University

King Khalid University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3