Sparse Signal Models for Data Augmentation in Deep Learning ATR

Author:

Agarwal Tushar1ORCID,Sugavanam Nithin1,Ertin Emre1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA

Abstract

Automatic target recognition (ATR) algorithms are used to classify a given synthetic aperture radar (SAR) image into one of the known target classes by using the information gleaned from a set of training images that are available for each class. Recently, deep learning methods have been shown to achieve state-of-the-art classification accuracy if abundant training data are available, especially if they are sampled uniformly over the classes and in their poses. In this paper, we consider the ATR problem when a limited set of training images are available. We propose a data-augmentation approach to incorporate SAR domain knowledge and improve the generalization power of a data-intensive learning algorithm, such as a convolutional neural network (CNN). The proposed data-augmentation method employs a physics-inspired limited-persistence sparse modeling approach, which capitalizes on the commonly observed characteristics of wide-angle synthetic aperture radar (SAR) imagery. Specifically, we fit over-parametrized models of scattering to limited training data, and use the estimated models to synthesize new images at poses and sub-pixel translations that are not available in the given data in order to augment the limited training data. We exploit the sparsity of the scattering centers in the spatial domain and the smoothly varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of the over-parametrized model fitting. The experimental results show that, for the training on the data-starved regions, the proposed method provides significant gains in the resulting ATR algorithm’s generalization performance.

Funder

Army Research Office

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference84 articles.

1. Wide-angle SAR imaging;Moses;Proceedings of the Algorithms for Synthetic Aperture Radar Imagery XI,2004

2. Attributed scattering centers for SAR ATR;Potter;IEEE Trans. Image Process.,1997

3. Sparsity-Driven Synthetic Aperture Radar Imaging: Reconstruction, autofocusing, moving targets, and compressed sensing;Varshney;IEEE Signal Process. Mag.,2014

4. Sparsity and Compressed Sensing in Radar Imaging;Potter;Proc. IEEE,2010

5. Classifying transformation-variant attributed point patterns;Dungan;Pattern Recognit.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3