Transcriptional Stochasticity as a Key Aspect of HIV-1 Latency

Author:

Damour Alexia1,Slaninova Vera2ORCID,Radulescu Ovidiu3ORCID,Bertrand Edouard2,Basyuk Eugenia1

Affiliation:

1. MFP UMR 5234 CNRS, Université de Bordeaux, 33076 Bordeaux, France

2. IGH UMR 9002 CNRS, Université de Montpellier, 34094 Montpellier, France

3. LPHI, UMR 5294 CNRS, University of Montpellier, 34095 Montpellier, France

Abstract

This review summarizes current advances in the role of transcriptional stochasticity in HIV-1 latency, which were possible in a large part due to the development of single-cell approaches. HIV-1 transcription proceeds in bursts of RNA production, which stem from the stochastic switching of the viral promoter between ON and OFF states. This switching is caused by random binding dynamics of transcription factors and nucleosomes to the viral promoter and occurs at several time scales from minutes to hours. Transcriptional bursts are mainly controlled by the core transcription factors TBP, SP1 and NF-κb, the chromatin status of the viral promoter and RNA polymerase II pausing. In particular, spontaneous variability in the promoter chromatin creates heterogeneity in the response to activators such as TNF-α, which is then amplified by the Tat feedback loop to generate high and low viral transcriptional states. This phenomenon is likely at the basis of the partial and stochastic response of latent T cells from HIV-1 patients to latency-reversing agents, which is a barrier for the development of shock-and-kill strategies of viral eradication. A detailed understanding of the transcriptional stochasticity of HIV-1 and the possibility to precisely model this phenomenon will be important assets to develop more effective therapeutic strategies.

Funder

ANRS fellowship

Sidaction

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3