Split-Gate: Harnessing Gate Modulation Power in Thin-Film Electronics

Author:

Lee Subin1ORCID,Kim Yeong Jae2,Yoo Hocheon1ORCID

Affiliation:

1. Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea

2. Korea Institute of Ceramic Engineering and Technology, Ceramic Total Solution Center, Icheon 17303, Republic of Korea

Abstract

With the increase in electronic devices across various applications, there is rising demand for selective carrier control. The split-gate consists of a gate electrode divided into multiple parts, allowing for the independent biasing of electric fields within the device. This configuration enables the potential formation of both p- and n-channels by injecting holes and electrons owing to the presence of the two gate electrodes. Applying voltage to the split-gate allows for the control of the Fermi level and, consequently, the barrier height in the device. This facilitates band bending in unipolar transistors and allows ambipolar transistors to operate as if unipolar. Moreover, the split-gate serves as a revolutionary tool to modulate the contact resistance by controlling the barrier height. This approach enables the precise control of the device by biasing the partial electric field without limitations on materials, making it adaptable for various applications, as reported in various types of research. However, the gap length between gates can affect the injection of the electric field for the precise control of carriers. Hence, the design of the gap length is a critical element for the split-gate structure. The primary investigation in this review is the introduction of split-gate technology applied in various applications by using diverse materials, the methods for forming the split-gate in each device, and the operational mechanisms under applied voltage conditions.

Funder

National Research Foundation of Korea

Ministry of Trade, Industry and Energy

Gachon University Research Fund of 2023

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3