Self-Assembled Nanotubes Based on Chiral H8-BINOL Modified with 1,2,3-Triazole to Recognize Bi3+ Efficiently by ICT Mechanism

Author:

Tao Jisheng1ORCID,Guo Fang1,Sun Yue2,Sun Xiaoxia1ORCID,Hu Yu3

Affiliation:

1. Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China

2. State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials iChEM, Department of Chemistry, Fudan University, Shanghai 200433, China

3. College of Chemistry, Nanchang University, Nanchang 330031, China

Abstract

A novel fluorescent “off” probe R-β-D-1 containing a 1,2,3-triazole moiety was obtained by the Click reaction with azidoglucose using H8-BINOL as a substrate, and the structure was characterized by 1H NMR and 13C NMR and ESI-MS analysis. The fluorescence properties of R-β-D-1 in methanol were investigated, and it was found that R-β-D-1 could be selectively fluorescently quenched by Bi3+ in the recognition of 19 metal ions and basic cations. The recognition process of Bi3+ by R-β-D-1 was also investigated by fluorescence spectroscopy, SEM, AFM, etc. The complex pattern of R-β-D-1 with Bi3+ was determined by Job’s curve as 1 + 1, and the binding constant Ka of R-β-D-1 and Bi3+ was valued by the Benesi–Hildebrand equation as 1.01 × 104 M−1, indicating that the binding force of R-β-D-1 and Bi3+ was medium. The lowest detection limit (LOD) of the self-assembled H8-BINOL derivative for Bi3+ was up to 0.065 µM. The mechanism for the recognition of Bi3+ by the sensor R-β-D-1 may be the intramolecular charge transfer effect (ICT), which was attributed to the fact that the N-3 of the triazole readily serves as an electron acceptor while the incorporation of Bi3+ serves as an electron donor, and the two readily undergo coordination leading to the quenching of fluorescence. The recognition mechanism and recognition site could be verified by DFT calculation and CDD (Charge Density Difference).

Funder

National Natural Science Foundation of China

Science Fund of the Technology Office of Jiangxi, China

National Training Programs of Innovation and Entrepreneurship for Undergraduates

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3