Box–Behnken Design to Optimize Standardized Mangiferin-Rich Mango Peel Extract from Agro-Industrial Waste Product

Author:

Sumpavapol Punnanee1ORCID,Waehayee Aenna23,Suklim Paranee23,Rachpirom Mingkwan4,Puttarak Panupong23ORCID

Affiliation:

1. Food Microbiology and Safety Laboratory, Food Science and Technology Program, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai 90110, Songkhla, Thailand

2. Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90110, Songkhla, Thailand

3. Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90110, Songkhla, Thailand

4. Eastern Science and Technology Park, Burapha University, Chon Buri Campus, Muang 20131, Chon Buri, Thailand

Abstract

The light mango or “Ma-Muang Bao” (Mangifere indica L. var.) is a native mango species originating from Malaysia and southern Thailand. The whole Ma-Muang Bao fruit, except peels, is popular as both a raw and ripe fruit for consumption, as well as being used in various processed food products. This study aims to transform the peel of a specific mango variety, which is a byproduct of the agro-industrial sweet, pickled mangoes industry, into a valuable bioactive ingredient for healthcare products. This is achieved through the establishment of a standardized mangiferin-rich mango peel extract (SMPE). Employing the Box–Behnken design (BBD) within the framework of response surface methodology (RSM), an optimal microwave-assisted extraction procedure was developed. A total of 27 experiments, each with four independent variables, including solvent ratio, extraction power, extraction time, and ethanol (EtOH) ratio, were conducted to optimize the extraction method in terms of mangiferin content and extraction yield. The optimized extraction conditions encompassed a solvent ratio of 120 mL EtOH/100 g sample, an extraction power of 450 W, an extraction time of approximately 4.3 min, and an EtOH ratio of 69.44% (EtOH in water). Small-scale extractions were carried out using the following specified parameters: solvent ratio of 120 mL, extraction power of 450 W, extraction time of 4 min, and EtOH ratio of 70% EtOH. These extractions yielded an extract with a mangiferin content of 27.24 ± 2.05 mg/g and an extraction yield of 3.71 ± 0.17% w/w. Notably, these outcomes were better from the mangiferin content of 19.62 mg/g and a yield of fresh peel of 5.61% estimated through BBD analysis. Furthermore, a pilot-scale extraction was performed using 7 kg of fresh mango peel and 70% EtOH (8.4 L) for 4 min, resulting in an extract with a mangiferin content of 51.85 ± 0.35 mg/g and a fresh peel yield of 4.35% w/w. This method emerges as the most suitable for mango peel extraction and forms the basis of the SMPE. The results from biological activities highlight the potential use of SMPE as the active ingredient for cosmeceutical or healthcare products for wound-healing and skin-brightening agents. Additionally, the knowledge from this study presents an alternative approach to various plant sources and sustainable extraction methods for the herbal extract industry.

Funder

Research and Development Office, Prince of Songkla University, Thailand

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3