Numerical Evaluation of the Flow within a Rhomboid Tessellated Pipe Network with a 3 × 3 Allometric Branch Pattern for the Inlet and Outlet

Author:

Rodríguez-Rivera René1ORCID,Carvajal-Mariscal Ignacio1ORCID,Terres-Peña Hilario2,De la Cruz-Ávila Mauricio3ORCID,De León-Ruiz Jorge E.4

Affiliation:

1. Instituto Politécnico Nacional, ESIME-UPALM, Mexico City 07738, Mexico

2. Departamento de Energía, Universidad Autónoma Metropolitana, San Pablo 180, Col. Reynosa Tamaulipas, Azcapotzalco, Mexico City 02200, Mexico

3. Centro de Investigación y de Estudios Avanzados, CINVESTAV, Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City 07360, Mexico

4. Centro de Investigación en Materiales Avanzados, S.C., CIMAV, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico

Abstract

This study presents a comprehensive assessment of the hydrodynamic performance of a novel pipe network with tessellated geometry and allometric scales. Numerical simulations were used to evaluate flow behaviour and pressure drop. The comparison geometry featured a Parallel Pipe Pattern (PPP), while the proposed design employed a Rhombic Tessellation Pattern (RTP). Steady-state simulations were conducted under identical boundary conditions, examining water mass flows ranging from 0.01 to 0.06 kg/s. The results revealed RTP significant advantages over the PPP. The RTP, integrated with a fractal tree pattern, demonstrated remarkable capabilities in achieving uniform flow distribution and maintaining laminar flow regimes across the mass flow rates. Additionally, exhibited an average reduction in pressure drop of 92% resulting in improved efficiency. The Reynolds number at PPP inlet was 5.4 times higher than in the RTP, explaining the considerably higher pressure drop. At a mass flow rate of 0.06 kg/s, the PPP experienced a pressure drop of up to 3.43 kPa, while the RTP’s pressure drop was only 0.350 kPa, highlighting a remarkable decrease of 91.5%. These findings underscore the RTP superior performance in minimizing pressure drop, making it suitable for accommodating higher mass flow rates, thus highlighting its exceptional engineering potential.

Funder

Instituto Politécnico Nacional and the Consejo Nacional de Humanidades, Ciencia y Tecnología, México

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3