Application of Host-Depleted Nanopore Metagenomic Sequencing in the Clinical Detection of Pathogens in Pigs and Cats

Author:

Han Xu1,Xia Zhaofei1

Affiliation:

1. College of Veterinary Medicine, China Agricultural University, Beijing 100193, China

Abstract

Metagenomic sequencing is a valuable tool for non-specifically detecting various microorganisms in samples, offering unique advantages for detecting emerging pathogens, fastidious or uncultivable pathogens, and mixed infections. It has recently been applied to clinically detect pathogenic microorganisms in animals; however, the high proportion of host genes, expensive sequencing equipment, and the complexity of sequencing and data analysis methods have limited its clinical utility. In this study, a combination of tissue homogenization and nuclease digestion was employed to remove host genes from pig and cat samples; DNA and RNA were then extracted and subjected to nonselective PCR amplification to simultaneously detect DNA and RNA pathogen genomes using R9.4.1 or R10.4.1 flow cells on the MinION platform. Real-time pathogen detection was conducted using EPI2M WIMP, and viral genome assembly was performed using NanoFilt, minimap2, samtools, and ivar. Pathogens in five clinical samples (serum, nasopharyngeal swab, feces, or ascites) from cats and four clinical samples (lung or small intestine tissue) from pigs were examined by metagenomic sequencing, and the results were consistent with those obtained by PCR and bacterial culture. Additionally, we detected four viruses and three bacteria that may be associated with diseases. A comparison of results before and after host gene removal in three samples showed a 9–50% reduction in host genes. We also compared the assembly efficiency of six virus genomes and found that data volumes ranging from 3.3 to 98.3 MB were sufficient to assemble >90% of the viral genomes. In summary, this study utilized optimized nanopore metagenomic sequencing and analysis methods to reduce host genes, decrease the required data volume for sequencing analysis, and enable real-time detection to determine when to stop sequencing. The streamlined sequencing and analysis process overcomes barriers to the veterinary clinical application of metagenomic sequencing and provides a reference for clinical implementation.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3