Heavy Metal Distribution and Health Risk Assessment in Groundwater and Surface Water of Karst Lead–Zinc Mine

Author:

Zhou Jinmei12,Jiang Zhongcheng2ORCID,Qin Xiaoqun2,Zhang Liankai3

Affiliation:

1. China Institute of Geo-Environmental Monitoring/Key Laboratory of Mine Ecological Effects and Systematic Restoration, Ministry of Natural Resources, Beijing 100081, China

2. Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China

3. Kunming Integrated Survey Center of Natural Resources, China Geological Survey, Kunming 650111, China

Abstract

Heavy metal pollution seriously threatens the drinking water safety and ecological environment in karst lead–zinc mines. Fifteen groundwater and surface water samples were collected in a karst lead–zinc mine in Daxin, Chongzuo. Ten heavy metal (Mn, Zn, As, Pb, Cr, Cd, Ni, Co, Cu, and Fe) concentrations were detected. Correlation and cluster analysis were utilized to explore the distribution characteristics and sources. The health risks were appraised using the health risk assessment model. The groundwater had more heavy metal types than the surface water, of which the concentrations and average concentrations exceeded the class III water quality standard. The mine drainage contributed most (65.10%) to the heavy metal concentrations. Pb, Zn, Cd, Mn, Co, Ni, Cu, and Fe primarily originated from the mining of the lead–zinc mine, Cr primarily came from the fuel combustion and wear of metals, and As was primarily connected with the regional geological background. The groundwater had a higher total health risk (5.12 × 10−4 a−1) than the surface water (2.17 × 10−4 a−1). In comparison with the non-carcinogenic risk, the carcinogenic risk increased by three to five orders of magnitude. The carcinogenic risk distribution of Cr and Cd represented the health risk pattern. The drinking pathway posed two to three orders of magnitude the amount of health risks that the dermal contact pathway posed. Children suffered greater health risks. Water security for children should be more strictly controlled. Zn, Cd, Pb, Mn, and Cr must be paid more attention in terms of water quality protection and management.

Funder

China Institute of Geo-Environmental Monitoring

National Natural Science Foundation of China

China Geological Survey’s Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3