Improving Alzheimer’s Disease Classification in Brain MRI Images Using a Neural Network Model Enhanced with PCA and SWLDA

Author:

Ahmad Irshad1ORCID,Siddiqi Muhammad Hameed2ORCID,Alhujaili Sultan Fahad3,Alrowaili Ziyad Awadh4ORCID

Affiliation:

1. Department of Computer Science, Islamia College, Peshawar 25000, KPK, Pakistan

2. College of Computer and Information Sciences, Jouf University, Sakaka 2014, Aljouf, Saudi Arabia

3. College of Applied Medical Sciences, Jouf University, Sakaka 2014, Aljouf, Saudi Arabia

4. Department of Physics, College of Science, Jouf University, Sakaka 2014, Aljouf, Saudi Arabia

Abstract

The examination of Alzheimer’s disease (AD) using adaptive machine learning algorithms has unveiled promising findings. However, achieving substantial credibility in medical contexts necessitates a combination of notable accuracy, minimal processing time, and universality across diverse populations. Therefore, we have formulated a hybrid methodology in this study to classify AD by employing a brain MRI image dataset. We incorporated an averaging filter during preprocessing in the initial stage to reduce extraneous details. Subsequently, a combined strategy was utilized, involving principal component analysis (PCA) in conjunction with stepwise linear discriminant analysis (SWLDA), followed by an artificial neural network (ANN). SWLDA employs a combination of forward and backward recursion methods to choose a restricted set of features. The forward recursion identifies the most interconnected features based on partial Z-test values. Conversely, the backward recursion method eliminates the least correlated features from the same feature space. After the extraction and selection of features, an optimized artificial neural network (ANN) was utilized to differentiate the various classes of AD. To demonstrate the significance of this hybrid approach, we utilized publicly available brain MRI datasets using a 10-fold cross-validation strategy. The proposed method excelled over existing state-of-the-art systems, attaining weighted average recognition rates of 99.35% and 96.66%, respectively, across all the datasets.

Funder

Deanship of Scientific Research at Jouf University

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3