Application of Microfluidics for Bacterial Identification

Author:

Daniel Fraser,Kesterson Delaney,Lei Kevin,Hord Catherine,Patel Aarti,Kaffenes Anastasia,Congivaram Harrshavasan,Prakash ShauryaORCID

Abstract

Bacterial infections continue to pose serious public health challenges. Though anti-bacterial therapeutics are effective remedies for treating these infections, the emergence of antibiotic resistance has imposed new challenges to treatment. Often, there is a delay in prescribing antibiotics at initial symptom presentation as it can be challenging to clinically differentiate bacterial infections from other organisms (e.g., viruses) causing infection. Moreover, bacterial infections can arise from food, water, or other sources. These challenges have demonstrated the need for rapid identification of bacteria in liquids, food, clinical spaces, and other environments. Conventional methods of bacterial identification rely on culture-based approaches which require long processing times and higher pathogen concentration thresholds. In the past few years, microfluidic devices paired with various bacterial identification methods have garnered attention for addressing the limitations of conventional methods and demonstrating feasibility for rapid bacterial identification with lower biomass thresholds. However, such culture-free methods often require integration of multiple steps from sample preparation to measurement. Research interest in using microfluidic methods for bacterial identification is growing; therefore, this review article is a summary of current advancements in this field with a focus on comparing the efficacy of polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and emerging spectroscopic methods.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3