Indoor Experiments on the Moisture Dynamic Response to Wind Velocity for Fuelbeds with Different Degrees of Compactness

Author:

Zhang Yunlin12

Affiliation:

1. School of Biological Sciences, Guizhou Education University, Gaoxin St. 115, Guiyang 550018, China

2. Key Laboratory of Ecology and Management on Forest Fire in Universities of Guizhou Province, Guizhou Education University, Gaoxin St. 115, Guiyang 550018, China

Abstract

The semiphysical method is presently the most widely used for predicting litter moisture content, but it produces some errors. These are mainly due to the simplification of the water loss process and not accounting for the fuelbed structure, which can have a serious impact on the accuracy of litter moisture content predictions and, consequently, on forest fire management. As such, in this study, we constructed fuelbeds with different degrees of compactness, and the moisture content is saturated at this time. The drying process is recorded every 10 min under different wind velocity, and the experiment is stopped when the moisture content is not changing. Taking the saturated fibers’ moisture content (30%) as the threshold value, the drying process was artificially divided into two stages (from the initial moisture content to 30%, it is a process of free water drying, and from 30% to the equilibrium moisture content, this is the process of drying of bound water), which is called the distinguishing drying process. The whole drying process (from the initial to the equilibrium moisture content) is called the undistinguishing drying process. Drying coefficient and effect factors were calculated by distinguishing and not distinguishing the drying process, respectively. This established a prediction model based on compactness and wind velocity. The results show that the drying coefficients, k2 and k, of the two litter types were significantly different: the k2 of the white oak fuelbed was significantly lower than its k, with a maximum variation difference of 57.10%. The k2 in the Masson pine fuelbed was significantly higher than its k, with a maximum variation difference of 72.76%. Wind velocity and compactness had significant effects on all the drying coefficients of the two litter types, but with changes in the effect factors. The changes in k2 were weaker than those of the other drying coefficients. Compared with the model that did not distinguish the drying process, the MRE of the prediction models for white oak and Masson pine decreased by 27.39% and 2.35%, respectively. The prediction accuracy of the model of the drying coefficient obtained by distinguishing the drying loss process was higher than that of the model that did not distinguish the drying process. This study was an indoor simulation experiment that elucidated the drying mechanism of litter and established a prediction model for the drying coefficient based on effect factors. It is of great significance for further field verification and for improving the accuracy of moisture content predictions based on the semiphysical method and will significantly improve the accuracy of fire risk and fire behavior prediction.

Funder

Guizhou Provincial Science and Technology Projects

China National Natural Science Foundation

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3