Evanescent-Wave Fiber Optic Sensing of the Anionic Dye Uranine Based on Ion Association Extraction

Author:

Okazaki Takuya,Watanabe Tomoaki,Kuramitz HidekiORCID

Abstract

Herein, we propose an evanescent-wave fiber optic sensing technique for the anionic dye uranine based on ion association extraction. The sensor was prepared by removing a section of the cladding from a multimode fiber and hydrophobization of the exposed core surface. Uranine was extracted in association along with hexadecyltrimethylammonium (CTA) ion onto the fiber surface and detected via absorption of the evanescent wave generated on the surface of the exposed fiber core. The effect of CTA+ concentration added for ion association was investigated, revealing that the absorbance of uranine increased with increasing CTA+ concentration. A change in the sensor response as a function of the added uranine concentration was clearly observed. The extraction data were analyzed using a distribution equilibrium model and a Freundlich isotherm. The uranine concentration in the evanescent field of the fiber optic was up to 54 times higher than that in the bulk solution, and the limit of detection (3σ) for uranine was found to be 1.3 nM.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3