Predicting Landslides Susceptible Zones in the Lesser Himalayas by Ensemble of Per Pixel and Object-Based Models

Author:

Sur Ujjwal,Singh Prafull,Meena Sansar RajORCID,Singh Trilok Nath

Abstract

Landslide susceptibility is a contemporary method for delineation of landslide hazard zones and holistically mitigating the future landslides risks for planning and decision-making. The significance of this study is that it would be the first instance when the ‘geon’ model will be attempted to delineate landslide susceptibility map (LSM) for the complex lesser Himalayan topography as a contemporary LSM technique. This study adopted the per-pixel-based ensemble approaches through modified frequency ratio (MFR) and fuzzy analytical hierarchy process (FAHP) and compared it with the ‘geons’ (object-based) aggregation method to produce an LSM for the lesser Himalayan Kalsi-Chakrata road corridor. For the landslide susceptibility models, 14 landslide conditioning factors were carefully chosen; namely, slope, slope aspect, elevation, lithology, rainfall, seismicity, normalized differential vegetation index, stream power index, land use/land cover, soil, topographical wetness index, and proximity to drainage, road, and fault. The inventory data for the past landslides were derived from preceding satellite images, intensive field surveys, and validation surveys. These inventory data were divided into training and test datasets following the commonly accepted 70:30 ratio. The GIS-based statistical techniques were adopted to establish the correlation between landslide training sites and conditioning factors. To determine the accuracy of the model output, the LSMs accuracy was validated through statistical methods of receiver operating characteristics (ROC) and relative landslide density index (R-index). The accuracy results indicate that the object-based geon methods produced higher accuracy (geon FAHP: 0.934; geon MFR: 0.910) over the per-pixel approaches (FAHP: 0.887; MFR: 0.841). The results noticeably showed that the geon method constructs significant regional units for future mitigation strategies and development. The present study may significantly benefit the decision-makers and regional planners in selecting the appropriate risk mitigation procedures at a local scale to counter the potential damages and losses from landslides in the area.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3