Prediction of Residual Compressive Strength after Impact Based on Acoustic Emission Characteristic Parameters

Author:

Zhao Jingyu1,Guo Zaoyang2,Lyu Qihui3,Wang Ben3

Affiliation:

1. The System Design Institute of Mechanical-Electrical Engineering, Beijing 100854, China

2. School of Science, Harbin Institute of Technology, Shenzhen 518055, China

3. Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China

Abstract

This study proposes a prediction method for residual compressive strength after impact based on the extreme gradient boosting model, focusing on composite laminates as the studied material system. Acoustic emission tests were conducted under controlled temperature and humidity conditions to collect characteristic parameters, establishing a mapping relationship between these parameters and residual compressive strength under small sample conditions. The model accurately predicted the residual compressive strength of the laminates after impact, with the coefficient of determination and root mean square error for the test set being 0.9910 and 2.9174, respectively. A comparison of the performance of the artificial neural network model and the extreme gradient boosting model shows that, in the case of small data volumes, the extreme gradient boosting model exhibits superior accuracy and robustness compared to the artificial neural network. Furthermore, the sensitivity of acoustic emission characteristic parameters is analyzed using the SHAP method, revealing that indicators such as peak amplitude, ring count, energy, and peak frequency significantly impact the prediction results of residual compressive strength. The machine-learning-based method for assessing the damage tolerance of composite laminates proposed in this paper utilizes the global monitoring advantages of acoustic emission technology to rapidly predict the residual compressive strength after the impact of composite laminates, providing a theoretical approach for online structural health monitoring of composite laminates. This method is applicable to various composite laminate structures under different impact conditions, demonstrating its broad applicability and reliability.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3