Polylactic Acid/Saqqez Gum Blends for Chewing Gum Applications: Impact of Plasticizers on Thermo-Mechanical and Morphological Properties

Author:

Kaveh Mona1ORCID,Yeganehzad Samira1,Hesarinejad Mohammad Ali1ORCID,Kiumarsi Maryam2,Abdollahi Moghaddam Mohammad Reza1

Affiliation:

1. Research Institute of Food Science and Technology (RIFST), Mashhad 91895-157.356, Iran

2. Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraβe 14, A-1090 Vienna, Austria

Abstract

This study investigated a blend of poly (lactic acid) (PLA) and Saqqez gum, with a weight ratio of 70:30, respectively, along with two plasticizers, acetyl tributyl citrate (ATBC) and polyethylene glycol (PEG), at three different concentrations (14%, 16% and 18% by weight of the PLA). The blend was analyzed using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile tests, water-absorption behavior (coefficients of water absorption, sorption, diffusion and permeability of the samples during 240 h) and chemical resistance (exposure to 1 mol/L HCl and 1 mol/L NaOH for 240 h). The desired elastomer blend was then used to prepare natural chewing gum, which was subsequently subjected to texture profile analyzer (TPA) tests and sensory evaluation. The results showed that the addition of both plasticizers increased the tensile properties of the blend. Compared to neat PLA, all the blends exhibited an increase in elongation at break and a decrease in yield strength, with the maximum elongation at break (130.6%) and the minimum yield strength (12.2 MPa) observed in the blend containing 16% ATBC. Additionally, all the thermal attributes studied, including Tg, Tc and Tm, were lower than those of neat PLA, and the Tg values deviated from the values predicted via Fox’s equation. SEM images of the blends confirmed that plasticization improved the homogeneity and distribution of the components in the blend structure. PEG 18% and ATBC 16% exhibit the highest and lowest water-absorption behavior, respectively. Regarding chemical resistance, all blends showed weight gain when exposed to HCl, while no weight loss was observed for resistance to NaOH. The chewing gum sample obtained similar values for the mentioned tests compared to the commercial control sample. Overall, the results indicate that plasticization enhances the structure and performance of the PLA/Saqqez gum blend and further investigation is warranted.

Funder

Research Institute of Food Science & Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3