Affiliation:
1. Key Laboratory of Advanced Technology for Aerospace Vehicles of Liaoning Province, Dalian University of Technology, Dalian 116024, China
2. State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
Abstract
Thermally stable high-performance phenolic resin aerogels (PRAs) are of great interest for thermal insulation because of their light weight, fire retardancy and low thermal conductivity. However, the drawbacks of PRA synthesis, such as long processing time, inherent brittleness and significant shrinkage during drying, greatly restrict their wide applications. In this work, PRAs were synthesized at ambient pressure through a near-net shape manufacturing technique, where boron-containing thermosetting phenolic resin (BPR) was introduced into the conventional linear phenolic resin (LPR) to improve the pore characteristics, mechanical properties and thermal performances. Compared with the traditional LPR-synthesized aerogel, the processing time and the linear shrinkage rate during the drying of the PRAs could be significantly reduced, which was attributed to the enhanced rigidity and the unique bimodal pore size distribution. Furthermore, no catastrophic failure and almost no mechanical degradation were observed on the PRAs, even with a compressive strain of up to 60% at temperatures ranging from 25 to 200 °C, indicating low brittleness and excellent thermo-mechanical stability. The PRAs also showed outstanding fire retardancy. On the other hand, the PRAs with a density of 0.194 g/cm3 possessed a high Young’s modulus of 12.85 MPa and a low thermal conductivity of 0.038 W/(m·K).
Funder
Open Funding Project of Shaanxi Key Laboratory of Aerospace Composite
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献