Freeze-Dried β-Glucan and Poly-γ-glutamic Acid: An Efficient Stabilizer to Strengthen Subgrades of Low Compressible Fine-Grained Soils with Varying Curing Periods

Author:

Vishweshwaran Muralidaran1,Sujatha Evangelin Ramani1ORCID,Baldovino Jair Arrieta2ORCID

Affiliation:

1. Centre for Advanced Research in Environment, School of Civil Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India

2. Applied Geotechnical Research Group, Department of Civil Engineering, Universidad de Cartagena, Cartagena de Indias 130015, Colombia

Abstract

The freeze-drying of biopolymers presents a fresh option with greater potential for application in soil subgrade stabilization. A freeze-dried combination of β-glucan (BG) and γ-poly-glutamic acid (GPA) biopolymers was used to treat low compressible clay (CL) and low compressible silt (ML) soils in dosages of 0.5%, 1%, 1.5%, and 2%. The California bearing ratio (CBR) test for the treated specimens was performed under three curing conditions: (i) thermal curing at 60 °C, (ii) air-curing for seven days followed by submergence for 4 days, and (iii) no curing, i.e., tested immediately after mixing. To investigate the influence of shear strength on the freeze-dried biopolymer-stabilized soil specimens and their variations with aging, unconfined compressive strength (UCS) tests were conducted after thermal curing at 60 °C for 3 days, 7 days, and 7 days of thermal curing followed by 21 days of air curing. The maximum CBR of 125.3% was observed for thermally cured CL and a minimum CBR of 6.1% was observed under soaked curing conditions for ML soils. Scanning electron microscopy (SEM), infrared spectroscopy, average particle size, permeability, and adsorption tests revealed the pore filling, biopolymer adsorption and coating on the soil surface, and agglomeration of the soil along with the presence of hydrogen bonds, covalent amide bonds, and Van der Waals forces that contributed to the stiffening of the stabilized soil. Using three-dimensional (3D) finite element analysis (FEA) and layered elastic analysis (LEA), a mechanistic–empirical pavement design was carried out for the stabilized soil and a design thickness catalog was prepared for the maximum CBR. The cost reductions for a 1 km section of the pavement were expected to be 12.5%.

Publisher

MDPI AG

Reference60 articles.

1. Performance of Sand-Treated Clay Subgrade Supporting a Low-Volume Flexible Pavement;Pedarla;Transp. Res. Rec.,2015

2. Use of Sulfur-Free Lignin as a Novel Soil Additive: A Multi-Scale Experimental Investigation;Liu;Eng. Geol.,2020

3. Basu, D., and Lee, M. (2022). Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering, Elsevier.

4. Biopolymers: An Overview;Shekh;Adv. Appl. Biobased Mater.,2023

5. Application of Biopolymers as a New Age Sustainable Material for Surfactant Adsorption: A Brief Review;Biswas;Carbohydr. Polym. Technol. Appl.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3