Selective Capturing of the CO2 Emissions Utilizing Ecological (3-Mercaptopropyl)trimethoxysilane-Coated Porous Organic Polymers in Composite Materials

Author:

Kotp Mohammed G.1,Kuo Shiao-Wei1ORCID

Affiliation:

1. Centre of Functional Polymers and Supramolecular Materials, Department of Materials and Optoelectronic Science, College of Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan

Abstract

Capturing carbon dioxide (CO2) is still a major obstacle in the fight against climate change and the reduction of greenhouse gas emissions. To address this problem, we employed a simple Friedel–Crafts alkylation to investigate the effectiveness of porous organic polymers (POPs) based on triphenylamine (TPA) and trihydroxy aryl terms derived from chloranil (CH), designated as TPA-CH POP. We then treated the TPA-CH POP with (3-mercaptopropyl)trimethoxysilane (3-MPTS), forming a TPA-CH POP-SH nanocomposite to enhance CO2 capture. Utilizing FTIR, solid-state NMR, SEM, TEM, along with XPS techniques, the molecular makeup, morphological characteristics, as well as physical features of TPA-CH POP and the TPA-CH POP-SH nanocomposite were thoroughly explored. Upon scorching to 800 °C, the TPA-CH POP-SH nanocomposite demonstrated more thermal durability over TPA-CH POP, achieving a char yield of up to 71.5 wt.%. The TPA-CH POP-SH nanocomposite displayed a 2.5-times better CO2 capture, as well as a comparable adsorption capacity of 48.07 cm3 g−1 at 273 K. Additionally, we found that the TPA-CH POP-SH nanocomposite exhibited an improved CO2/nitrogen (N2) selectivity versus the original TPA-CH POP. Typical enthalpy changes for CO2 capture were somewhat increased by the 3-MPTS coating, indicating greater binding energies between CO2 molecules and the adsorbent surface. Our outcomes demonstrate that a TPA-CH POP composite coated with MPTS is a viable candidate for effective CO2 capture uses. Our findings encourage the investigation of different functional groups and optimization strategies.

Funder

National Science and Technology Council

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3