A Novel, Dual-Initiator, Continuous-Suspension Grafting Strategy for the Preparation of PP-g-AA-MAH Fibers to Remove of Indigo from Wastewater

Author:

Xie Sijia1,Fang Ziyang1ORCID,Lian Zhouyang1,Luo Zhengwei1,Zhang Xueying1,Ma Shengxiu2

Affiliation:

1. School of Environmental Science and Engineering, Nanjing Tech Univeristy, Nanjing 211816, China

2. Karamay Zhiyuan Bochuang Environmental Protection Technology Co., Ltd., Karamay 834000, China

Abstract

The indigo dye found in wastewater from printing and dyeing processes is potentially carcinogenic, teratogenic, and mutagenic, making it a serious threat to the health of animals, plants, and humans. Motivated by the growing need to remove indigo from wastewater, this study prepared novel fiber absorbents using melt-blow polypropylene (PP) melt as a matrix, as well as acrylic acid (AA) and maleic anhydride (MAH) as functional monomers. The modification conditions were studied to optimize the double-initiation, continuous-suspension grafting process, and then functional fibers were prepared by melt-blown spinning the modified PP. The results showed that the optimum modification conditions were as follows: a 3.5 wt% interfacial agent, 8 mg/L of dispersant, 80% monomer content, a 0.8 mass ratio of AA to MAH, a 1000 r/min stir speed, 3.5 wt% initiator DBPH grafting at 130 °C for 3 h, and 1 wt% initiator BPO grafting at 90 °C for 2 h. The highest grafting rate of the PP-g-AA-MAH was 31.2%, and the infrared spectrum and nuclear magnetic resonance spectroscopic analysis showed that AA and MAH were successfully grafted onto PP fiber. This modification strategy also made the fibers more hydrophilic. The adsorption capacity of the PP-g-AA-MAH fibers was highly dependent on pH, and the highest indigo adsorption capacity was 110.43 mg/g at pH 7. The fiber adsorption capacity for indigo increased rapidly before plateauing with increasing time or indigo concentration, and the experimental data were well described in a pseudo-second-order kinetic model and a Langmuir isothermal adsorption model. Most impressively, the modified fiber adsorption capacity for indigo remained as high as 91.22 mg/g after eight regeneration and reuse cycles. In summary, the PP-g-AA-MAH fibers, with excellent adsorption-desorption characteristics, could be readily regenerated and reused, and they are a promising material for the removal of indigo from wastewater.

Funder

The Key Research and Development Program of Karamay

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3